Supporting your child's math learning

Marian Small

Tonight I will address

∞ How the teaching of math has and has not changed
∞ Things you can do to support your child's math learning
\propto There will certainly be time for questions throughout or at the end.

There are 5 strands

\& Number
∞ C Geometry
\propto Measurement
∞ Pattern and Algebra
$\propto<$ Data and Probability

Most of you...

$\propto s$ are most concerned about number, so I will start there.

Working with numbers

∞ The way we approach the learning of "facts" and the learning of procedures has changed in some ways, but not other ways.
a_{8} We will discuss both the how and the why.

Facts first

© Facts are things like $4+8=12$ or $7 \times 4=28$ or $12-3=9$ or $40 \div 5=8$.
\& They involve small numbers.
$\propto<$ Facts remain important because they are fundamental both to estimation and any other calculations.

We used to believe...

∞ The best way to learn facts is to sit down and memorize them by saying them over and over.
$\propto<$ And that being super fast with them is really important.

Now we realize...

\leftrightarrow \& That you are ahead of the game if you have tools to recall something you have memorized but may forget.
$\propto<$ We call these strategies.

An added benefit..

\propto Q The strategies we use to help kids recall facts also are useful in other computations.

There is now research that shows...

\bigcirc P That even though some kids memorize well..
∞ for kids who are anxious about math or get nervous having to be quick, old strategies doom them to failure.
∞ Brain research shows that when you are anxious, it is short term memory that is impacted and that is where facts are stored. (Sian Bellock)
∞ We need to approach fact learning in different ways for different kids.

So we teach principles and strategies

$\propto \&$ For example, since 4 combined with 5 is the same as 5 combined with 4 , we only have to learn half the addition facts.

So we teach principles and strategies

∞ For example, since 8 combined with 3 is the same $8+2$ +1 , it' s really $10+1$

O	O	O	O	O
O	O	O	X	X

\mathbf{X}				

So we teach principles and strategies

\propto For some reason, we learn doubles quickly, so kids can relate $3+4$ to $(3+3)+1$ or $(4+4)-1$.
\propto Or $7+8$ to $(7+7)+1$ or $(8+8)-1$.

So we teach principles and strategies

$\leftrightarrow 8$ For example, since 4 groups of 5 can be viewed as 5 groups of 4, we only need to memorize half the multiplication facts.
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
$\begin{array}{lllll}0 & 0 & 0 & 0 & 0\end{array}$

So we teach principles and strategies

\propto For example, since 4 groups of 7 can be viewed as 4 groups of 5 with 4 groups of 2, we know the $7 x$ table if we can learn the 5 x and 2 x tables.

$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	\mathbf{x}	\mathbf{x}
$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	\mathbf{x}	\mathbf{x}
$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	\mathbf{x}	\mathbf{x}
$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	\mathbf{x}	\mathbf{x}

Many of these principles

can be..

∞ Seen on addition and multiplication tables
CR visualized using manipulatives

+	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$
$\mathbf{1}$	2	3	4	5	6	7	8	9	10
$\mathbf{2}$	3	4	5	6	7	8	9	10	11
$\mathbf{3}$	4	5	6	7	8	9	10	11	12
$\mathbf{4}$	5	6	7	8	9	10	11	12	13
$\mathbf{5}$	6	7	8	9	10	11	12	13	14
$\mathbf{6}$	7	8	9	10	11	12	13	14	15
$\mathbf{7}$	8	9	10	11	12	13	14	15	16
$\mathbf{8}$	9	10	11	12	13	14	15	16	17
$\mathbf{9}$	10	11	12	13	14	15	16	17	18

\times	0	1	2	3	4	5	6	7	8	9
0	0	0	0	0	0	0	0	0	0	0
1	0	1	2	3	4	5	6	7	8	9
2	0	2	4	6	8	10	12	14	16	18
3	0	3	6	9	12	15	18	21	24	27
4	0	4	8	12	16	20	24	28	32	36
5	0	5	10	15	20	25	30	35	40	45
6	0	6	12	18	24	30	36	42	48	54
7	0	7	14	21	28	35	42	49	56	63
8	0	8	16	24	32	40	48	56	64	72
9	0	9	18	27	36	45	54	63	72	81

\times	0	1	2	3	4	5	6	7	8	9
0	0	0	0	0	0	0	0	0	0	0
1	0	1	2	3	4	5	6	7	8	9
2	0	2	4	6	8	10	12	14	16	18
3	0	3	6	9	12	15	18	21	24	27
4	0	4	8	12	16	20	24	28	32	36
5	0	5	10	15	20	25	30	35	40	45
6	0	6	12	18	24	30	36	42	48	54
7	0	7	14	21	28	35	42	49	56	63
8	0	8	16	24	32	40	48	56	64	72
9	0	9	18	27	36	45	54	63	72	81

Math tools

\& 10-frames

It's easy to see why $9+9=10+8$ (18).

Just move one counter up.

Accessing virtual manipulatives

\& There are tools for materials your children use in class freely available on line.
$\propto \times$ Many are also available as apps.

Pattern Blocks

∞ http://nlvm.usu.edu/en/nav/
frames_asid_169_g_1_t_2.html?open=activities

Hundreds chart

∞ http://nlvm.usu.edu/en/nav/category_g_2_t_1.html

Base ten blocks

∞ \&ttp://nlvm.usu.edu/en/nav/category_g_2_t_1.html

Geometric shapes

\& http://illuminations.nctm.org/Activity.aspx?id=3521

What about computing with 2digit or larger numbers

\propto There is increasingly more focus on estimation and more focus on calculation using strategies, often mentally

Adding on a 100 chart

$44+32$

1	2	3	4	5	6	7	8	9	10
11	12	13	14	15	16	17	18	19	20
21	22	23	24	25	26	27	28	29	30
31	32	33	34	35	36	37	38	39	40
41	42	43	44	45	46	47	48	49	50
51	52	53	4	55	56	57	58	59	60
61	62	63	44	65	66	67	68	69	70
71	72	73	4	75	79	77	78	79	80
81	82	83	84	85	86	87	88	89	90
91	92	93	94	95	96	97	98	99	100

Subtracting on a 100 chart

65-19

1	2	3	4	5	6	7	8	9	10
11	12	13	14	15	16	17	18	19	20
21	22	23	24	25	26	27	28	29	30
31	32	33	34	35	36	37	38	39	40
41	42	43	44	4	4	47	48	49	50
51	52	53	54	55	56	57	58	59	60
61	62	63	64	65	66	67	68	69	70
71	72	73	74	75	76	77	78	79	80
81	82	83	84	85	86	87	88	89	90
91	92	93	94	95	96	97	98	99	100

Alternative strategies that might seem new

cos How would you calculate 342-121?
∞ Would you do $200-2$ the same way?
\& Children are learning different strategies since different ones are more efficient or more meaningful in different situations AND
$\propto<$ Different ones make more sense to different kids.

For example

\propto It is reasonable and correct to add like this:
38
$+\underline{47}$
70
$+\underline{15}$
85

For example

\propto It is reasonable and correct to add like this:
38
$+\underline{47}$

$$
=38+50-3=88-3=85
$$

Or subtract like this...

$$
\begin{aligned}
\text { c } 100 & =99+1 \\
-79 & \underline{-79} \\
& 20+1=21
\end{aligned}
$$

Strategies also are useful in multiplying

cs For example:

Also division

C_{8} How many packages of 8 cookies if there are 348 cookies to package?

8	348 -80
268	10
$-\underline{160}$	20
108	
$-\underline{80}$	10
28	
$-\underline{24}$	$\underline{3}$
4	43

Attention to estimation

\propto_{8} In the world toward which we are moving, technology will be regularly used to calculate, but we still need to estimate to see if those answers make sense.

Attention to estimation

∞ Is $42+58+91$ closer to 100,150 or 200 ? Why?
\& About how much is 4213-3314?
$\propto 8$ Why is 29×42 close to 1200 ?

Other strands

© Algebra work earlier, particularly things like:

$$
4+[]=5+8
$$

Teaching through problem solving

∞ R This is a better description of what we do than "discovery".
\propto It means that as we solve a problem, we clarify a lot of ideas.

I might ask...

Cs I bought something and gave the clerk $\$ 10$.
∞ She gave me back one bill and 4 coins.
co How much might the item have cost?

Lots of thinking

as Realizing that the bill has to be $\$ 5$.
© Realizing that the coins, these days, have to be nickels, dimes, quarters, loonies or toonies.

Qs Getting lots and lots of practice trying lots and lots of combinations.

C R Realizing that the price + the change $=\$ 10$

What can you do?

$)_{8}$ Our big question as parents is what we can do to help our child.

Number Play

Lots of children respond well to "magic".
For example:

- Choose a number.
(Double it.
- Add 4.
- Double that.
- Add 8.
- Divide by 4.

Tell me your answer and I will guess your
number.

How did I make that up?

\propto Choose a number.
CP Double it. \square
cr Add 4.
© Double that.
\square
\square
\square
© A Add 8.

$\square \square+4$

$$
+8
$$

$$
+16
$$

CR Divide by 4 .
$+4$

How many....?

$\leftrightarrow 8$ Spoons in the drawer?
\& Steps to get downstairs?
∞ Trees on the street?
\propto Qections in an orange?
CR Windows in the house?

Interesting Questions

@ Ask little questions in passing.
\& e.g. The answer is 10 . What is the question?
∞ If McDonalds' s sells McNuggets in packs of 6,9 and 20 , can you buy exactly $25 \mathrm{McNuggets?}$

Support involves...

$\propto<$ Not showing, but probing.
\propto Asking why this or why that...
\& Building connections

Games

$\propto \&$ You could play games where you make up the rules or use existing games to practise skills.

Games to Play

$\infty 2$ players
\propto Each rolls two dice. The score is the sum.
$\propto \times$ The first player to get to 100 wins.

Games to Play

\& 2 players
∞ Each rolls two dice. The score is 2 x one value + the other.
\propto The first player to get to 100 wins.

Board games

$\bigcirc 24$

Box cars and one eyed jacks

© \rightarrow http://www.boxcarsandoneeyedjacks.com/

You could solve interesting problems

How much is your name worth?

\mathbf{A}	\mathbf{B}	\mathbf{C}	\mathbf{D}	\mathbf{E}	\mathbf{F}	\mathbf{G}	\mathbf{H}	\mathbf{I}
$\mathbf{1}$	2	3	4	5	6	7	8	9
\mathbf{J}	\mathbf{K}	\mathbf{L}	\mathbf{M}	\mathbf{N}	\mathbf{O}	\mathbf{P}	\mathbf{Q}	\mathbf{R}
10	11	12	13	14	15	16	17	18
\mathbf{S}	\mathbf{T}	\mathbf{U}	\mathbf{V}	\mathbf{W}	\mathbf{X}	\mathbf{Y}	\mathbf{Z}	
19	20	21	22	23	24	25	26	

What words are worth 40 50?

\mathbf{A}	\mathbf{B}	\mathbf{C}	\mathbf{D}	\mathbf{E}	\mathbf{F}	\mathbf{G}	\mathbf{H}	\mathbf{I}
$\mathbf{1}$	2	3	4	5	6	7	8	9
\mathbf{J}	\mathbf{K}	\mathbf{L}	\mathbf{M}	\mathbf{N}	\mathbf{O}	\mathbf{P}	\mathbf{Q}	\mathbf{R}
10	11	12	13	14	15	16	17	18
\mathbf{S}	\mathbf{T}	\mathbf{U}	\mathbf{V}	\mathbf{W}	\mathbf{X}	\mathbf{Y}	\mathbf{Z}	
19	20	21	22	23	24	25	26	

Figure this

C8 http://www.figurethis.org

What is success?

$\propto 8$ Not just a mark
© Enjoying the math
$\propto<$ Making sense of the world using math
\& Building connections

You need to...

$\propto 8$ Encourage kids to "teach you" what they learned or explain their thinking to you.

You need to...

Q Show that you enjoy math too.
Q Show confidence- believe that they can if you give them the tim.
C Emphasize good thinking, not speed.
∞ Emphasize the good thinking, not the mistakes.

You might have questions

You can download at

CR Www.onetwoinfinity.ca
cos Parents

